Examples of non-rigid CAT(0) groups from the category of knot groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examples of non-rigid CAT(0) groupsfrom the category of knot groups

C Croke and B Kleiner have constructed an example of a CAT(0) group with more than one visual boundary. J Wilson has proven that this same group has uncountably many distinct boundaries. In this article we prove that the knot group of any connected sum of two non-trivial torus knots also has uncountably many distinct CAT(0) boundaries.

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

Examples of non-quasicommutative semigroups decomposed into unions of groups

Decomposability of an algebraic structure into the union of its sub-structures goes back to G. Scorza's Theorem of 1926 for groups. An analogue of this theorem for rings has been recently studied by A. Lucchini in 2012. On the study of this problem for non-group semigroups, the first attempt is due to Clifford's work of 1961 for the regular semigroups. Since then, N.P. Mukherjee in 1972 studied...

متن کامل

Category of $H$-groups

‎This paper develops a basic theory of $H$-groups‎. ‎We‎ ‎introduce a special quotient of $H$-groups and‎ ‎extend some algebraic constructions of topological groups to the category‎ ‎of H-groups and H-maps and then present a functor from this category to the category of quasitopological groups‎.

متن کامل

examples of non-quasicommutative semigroups decomposed into :union:s of groups

decomposability of an algebraic structure into the :union: of its sub-structures goes back to g. scorza's theorem of 1926 for groups. an analogue of this theorem for rings has been recently studied by a. lucchini in 2012. on the study of this problem for non-group semigroups, the first attempt is due to clifford's work of 1961 for the regular semigroups. since then, n.p. mukherjee in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2008

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2008.8.1666